
CERTIFICATE

Certified Passive House Component ID: 0842ws03 valid until 31. December 2018

Aditional thermal bridges

Name Thermal bridge EWPA01 X= 0.002 W/K X= 0.003 W/K ROPA01

Description f_{Rsi} 0.99 Punkctual thermal bridge wall-anchor 0.97 Anchor-screw trough external insulation

Catregory Manufacturer Product name Construction system | EnerPHit insulation system pro Passivhausfenster GmbH Oberaudorf GERMANY smartshell reno

This certificate for the cool, temperate climate zone was awarded based on the following criteria

Hygiene criterion

The minimum temperature factor of the interior surfaces is

Comfort criterion

The U-value of the installed windows is

Efficiency criteria

Heat transfer coefficient of building envelope Temperaturfactor of opaque junctions Thermal bridge free design for key connection details

An airtightness concept for all components and connect details was provided.

Page 4/4

cool, temperate climate

Passive House Institute Dr. Wolfgang Feist 64342 Darmstadt GERMANY

ces is	$\mathbf{f}_{Rsi=0,25m^2K/W} \ge$	0.70
	U _{w,i} ≤	0.85 W/(m²K)
	U*f _{PHI} ≤ f _{Rsi=0,25m²K/W} ≥ Ψ ≤	0.15 W/(m²K) 0.86 0.01 W/(m²K)
ection	cool, temperate climate	
	$\mathbf{\hat{V}}$	*
	CERTI COMPC	

Opaque building envelop

The system is dedicated as an additional external insulation for existing buildings. For the certification it was assumed, that the flor slap is enhanced by a PU-foam insulation.

The thermal quality of the walls is improved by an exterior insulation. A plastered wood fiber board is located on the very outside of the new insulation layer. It is connected to the existing walls via timber beams and punctual anchors. The space in between the old wall and the wood fiber board is filled with cellulose.

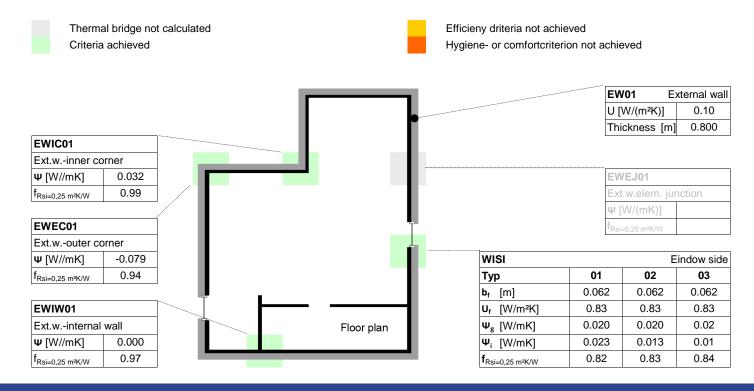
An additional insulation layer outside the existing roof construction in combination with a cellulose infill insulation between the rafters reduces the thermal losses of the roof.

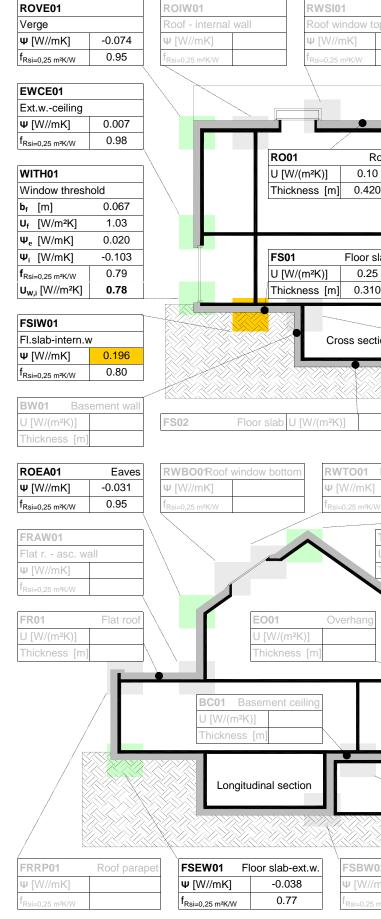
Windows

The certification was done with the window smartwin solar I², which is a very slim phA-class window with triple 18 mm argon glazing, Swisspacer Ulti-mate spacer bar with PU secondary seal. A special feature of smatwin solar I² is, that the reveal becomes part of the windows frame.

In No. 01, the window is installed in flush with the exterior plaster.

In No. 02, it is installed deeper in the wall.


In No. 03, the windows are installed right at the edge of the existing wall, see certification report.


Airtightness concept

The airtightness layer in the walls is the improved external plaster. The plaster and the windows as well as other junctions are connected via airtight-ness tapes. In the roof, an OSB-board at the room-side of the construction serves as airtightness lay-er. The boards are connected by an airtightness tape.

Explainatory notes

The Passive House Institute has defined international component criteria for seven climate zones based on hygiene-, comfort- and affordability criteria. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. This use might make sense in certain circunstances.

Page 2/4

	/wito			Window top
/	Тур	01	02	03
	b _f [m]	0.062	0.062	0.062
	U _f [W/m²K]	0.83	0.83	0.83
/	Ψ_{g} [W/mK]	0.020	0.020	0.020
	Ψ _i [W/mK]	0.022	0.013	0.09
	f _{Rsi=0,25 m²K/W}	0.82	0.83	0.84
	WIBO		Win	dow botton
	b _f [m]	0.062	0.062	0.062
	U _f [W/m²K]	0.93	0.93	0.93
	Ψ _g [W/mK]	0.020	0.020	0.020
	Ψ _i [W/mK]	0.028	0.023	0.033
(f _{Rsi=0,25 m²K/W}	0.82	0.80	0.81
	U _{w,i} [W//m²K]	0.85	0.83	0.83
		Ψ [W//r f _{Rsi=0,25}	4	
		BWFS	01 Basem.	wfloor sla
		Ψ [\///] Ψ		
		f _{Rsi=0,25}	m²K/W	
		FSBW Ψ [W//r	01 Fl.sla	b-basem.w
Thickness	s [m]	f _{Rsi=0,25}	-	
Thickness			m²K/W	Ridg
		f _{Rsi=0,25}	m²K/W 1	Ridg -0.030
		f _{Rsi=0,25}	1 mK]	
oof window side	8	f _{Rsi=0,25} RORI0 Ψ [W//r f _{Rsi=0,25}	1 nK] m²K/W	-0.030 0.95
oof window side	8	f _{Rsi=0.25} RORI0 Ψ [W//t f _{Rsi=0.25}	1 nK] m²K/W	-0.030 0.95
oof window side	8	f _{RSi=0,25} RORI0 Ψ [W//ri f _{Rsi=0,25} ROJU0 Ψ [W//ri	1 nK] m²K/W M²K/W	-0.030 0.95
oof window side	8	f _{Rsi=0.25} RORI0 Ψ [W//t f _{Rsi=0.25}	1 nK] m²K/W M²K/W	-0.030 0.95
oof window side	8	f _{RSi=0.25} RORIO Ψ [W//t f _{Rsi=0.25} ROJUO Ψ [W//t f _{Rsi=0.25}	m²K/W 1 nK] m²K/W 1 Top cei	-0.030 0.95 Junctio
oof window side	8	f _{Rsi=0,25} RORIO Ψ [W//t] f _{Rsi=0,25} ROJUC Ψ [W//t] f _{Rsi=0,25}	1 nK] mªKW 11 nK] 1 Top cei nK]	-0.030 0.95 Junctio
oof window side	8	f _{Rsi=0,25} RORIO Ψ [W//ti f _{Rsi=0,25} ROJUC Ψ [W//ti f _{Rsi=0,25} TCEA0 Ψ [W//ti f _{Rsi=0,25} EWEO	1 nK] m*KW 11 nK] m*KW 1 Top cei m*KW 01 Ext.v	-0.030 0.95 Junction
01 Top c	8	f _{Rsi=0.25} RORIO Ψ [W//t] f _{Rsi=0.25} ROJUC Ψ [W//t] f _{Rsi=0.25} TCEA0 Ψ [W//t] f _{Rsi=0.25}	1 nK] m²K/W 11 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext.v nK]	-0.030 0.95 Junction
01 Top c	8	f _{Rsi=0,25} RORIO Ψ [W//ti f _{Rsi=0,25} ROJUC Ψ [W//ti f _{Rsi=0,25} TCEA0 Ψ [W//ti f _{Rsi=0,25} EWEO	1 nK] m²K/W 11 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext.v nK]	-0.030 0.95 Junction
01 Top c	8	f _{Rsi=0,25} RORIO Ψ [W//t] f _{Rsi=0,25} ROJUC Ψ [W//t] f _{Rsi=0,25} TCEA0 Ψ [W//t] f _{Rsi=0,25} EWEO Ψ [W//t] f _{Rsi=0,25}	1 mK] m*KW 11 mK] m*KW 1 Top cei m*KW 01 Ext.v mK] m*KW	-0.030 0.95 Junction
oof window side	8	f _{Rsi=0,25} RORIO Ψ [W//ti f _{Rsi=0,25} ROJUC Ψ [W//ti f _{Rsi=0,25} TCEA0 Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25}	1 nK] m²K/W 11 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext.1 nK] m²K/W 02 Ext.1	-0.030 0.95 Junction
oof window side	8	f _{Rsi=0.25} RORIO Ψ [W//t] f _{Rsi=0.25} ROJUO Ψ [W//t] f _{Rsi=0.25} TCEA0 Ψ [W//t] f _{Rsi=0.25} EWEO Ψ [W//t] f _{Rsi=0.25}	1 nK] m²K/W 11 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext.v nK] 02 Ext.v nK]	-0.030 0.95 Junction
01 Top c	8	f _{Rsi=0,25} RORIO Ψ [W//ti f _{Rsi=0,25} ROJUC Ψ [W//ti f _{Rsi=0,25} TCEA0 Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25}	1 nK] m²K/W 11 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext.v nK] 02 Ext.v nK]	-0.030 0.95 Junction
oof window side	8		1 m²K/W 1 mK] m²K/W 1 m²K/W 1 1 Top cei m²K/W 1 1 Top cei m²K/W 01 Ext.v nK] m²K/W 02 Ext.v nK] m²K/W	0.95 Junction lling - eave w. overhang w. overhang
oof window side	8	f _{Rsi=0,25} RORIO Ψ [W//ti f _{Rsi=0,25} ROJUC Ψ [W//ti f _{Rsi=0,25} TCEA0 Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25}	1 mRKJ mRKW 11 mRKJ mRKVW 11 Top cei mRKJ mRKJ mRKJ mRKVW 02 Ext.1 mRKJ mRKW 01 Bas	-0.030 0.95 Junction
oof window side	8	f _{Rsi=0.25} RORIO Ψ [W//t f _{Rsi=0.25} ROJUO Ψ [W//t f _{Rsi=0.25} TCEAO Ψ [W//t f _{Rsi=0.25} EWEO Ψ [W//t f _{Rsi=0.25} EWEO Ψ [W//t f _{Rsi=0.25} EWEO Ψ [W//t f _{Rsi=0.25}	1 nK] m²K/W 1 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext. m²K/W 02 Ext. m²K/W 01 Ext. m²K/W	-0.030 0.95 Junction iling - eave w. overhang w. overhang
oof window side	8	f _{Rsi=0,25} RORIO Ψ [W//ti f _{Rsi=0,25} ROJUC Ψ [W//ti f _{Rsi=0,25} TCEA0 Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25} EWEO Ψ [W//ti f _{Rsi=0,25}	1 nK] m²K/W 1 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext. m²K/W 02 Ext. m²K/W 01 Ext. m²K/W	-0.030 0.95 Junction iling - eave w. overhang w. overhang
oof window side		f _{Rsi=0.25} RORIO Ψ [W//t f _{Rsi=0.25} ROJUO Ψ [W//t f _{Rsi=0.25} TCEAO Ψ [W//t f _{Rsi=0.25} EWEO Ψ [W//t f _{Rsi=0.25} EWEO Ψ [W//t f _{Rsi=0.25} EWEO Ψ [W//t f _{Rsi=0.25}	1 nK] m²K/W 1 nK] m²K/W 1 Top cei nK] m²K/W 01 Ext.v nK] m²K/W 01 Ext.v nK] m²K/W 01 Ext.v nK] m²K/W	-0.030 0.95 Junction iling - eave w. overhang w. overhang

Page 3/4

www.passivehouse.com