
CERTIFICATE

Certified Passive House Component ID: 0840ws03 valid until 31. December 2018

Catregory Manufacturer Product name

Construction system | Solid timber construction Schreinerei B. Peters S.àr.l. TROISVIERGES LUXEMBOURG smartwood

This certificate for the cool, temperate climate zone was awarded based on the following criteria

Hygiene criterion

The minimum temperature factor of the interior surfaces is

Comfort criterion

The U-value of the installed windows is

Efficiency criteria

Heat transfer coefficient of building envelope Temperaturfactor of opaque junctions Thermal bridge free design for key connection details

An airtightness concept for all components and connect details was provided.

Page 4/4

www.passivehouse.com

cool, temperate climate

Passive House Institute Dr. Wolfgang Feist 64342 Darmstadt GERMANY

es is	f _{Rsi=0,25m²K/W} ≥	0.70	
	U _{w,i} ≤	0.85 W/(m ² K)	
	U*f _{PHI} ≤ f _{Rsi=0,25m²K/W} ≥ Ψ ≤	0.15 W/(m²K) 0.86 0.01 W/(m²K)	
ection	cool, temperate climate		
	$\mathbf{\hat{v}}$	**	
	CERTIFIED COMPONENT		
	Passive Hous	se Institute	

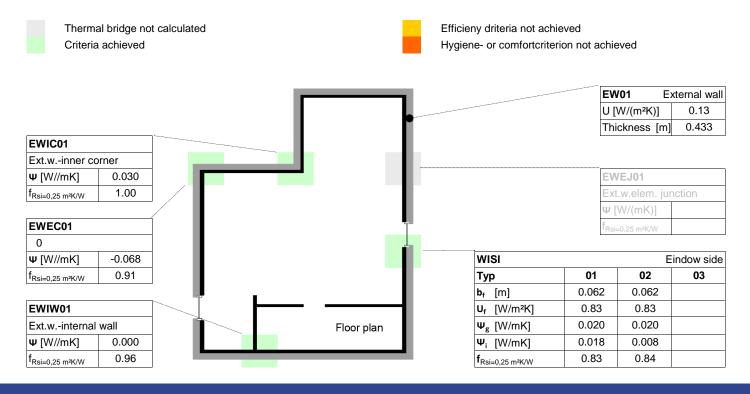
Opaque building envelop

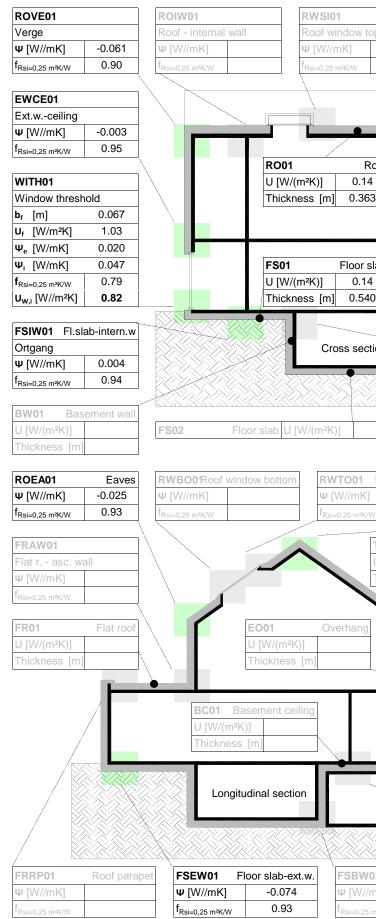
The construction system is built on a concrete floor slab supported completely by ISOQUICK Insulation. The walls are constructed with solid wood with additional insulation layer by timber studs and cellulose. The roof construction is formed with timber beams, inside is an OSB-board as airtightness layer, than an additional wood fibre board and cross battens with gypsum plaster board mounted.

Windows

The certification was done with the window smart-win solar I, which is a very slim phA-class window with triple 18 mm argon glazing, Swisspacer Ulti-mate spacer bar with PU secondary seal. A special feature of smatwin solar I is, that the reveal be-comes part of the windows frame.

In No. 01, the window is installed in flush with the exterior plaster.


In No. 02, it is installed deeper in the wall, see certification report.


Airtightness concept

The airtightness layer in walls and roof are OSBboards, connected by airtightness tapes. The junctions of the components are also taped together. The airtightness layer in the walls is between the solid timber and the insulation layer.

Explainatory notes

The Passive House Institute has defined international component criteria for seven climate zones based on hygiene-, comfort- and affordability criteria. In principle, components which have been certified for climate zones with higher requirements may also be used in climates with less stringent requirements. This use might make sense in certain circunstances.

Page 2/4

	WITO		1	Window top
	Тур	01	02	03
/	b _f [m]	0.062	0.062	
	U _f [W/m²K]	0.83	0.83	
/	Ψ_{g} [W/mK]	0.020	0.020	
] /	Ψ _i [W/mK]	0.017	0.012	
	f _{Rsi=0,25 m²K/W}	0.85	0.88	
	WIBO		Win	dow bottom
	/ b _f [m]	0.062	0.062	
	U _f [W/m²K]	0.93	0.93	
	Ψ_{g} [W/mK]	0.020	0.020	
/	Ψ _i [W/mK]	0.029	0.032	
1	f _{Rsi=0,25 m²K/W}	0.85	0.85	
	U _{w,i} [W//m²K]	0.84	0.82	
	LL		11	
		BWBC	01 Basem.v	vbasem.c
		Ψ [\///		
		f _{Rsi=0,25}		
		1.51=0,20		
		BWFS	01 Basem.v	vfloor slab
KKK.		Ψ[\//	1	
		f _{Rsi=0,25}	-	
		1131=0,20		
Y XX		FSBW	01 Fl.sla	b-basem.w
	777727			
		$\Psi V V / /$		
Thicknes vindow sid		ψ [W// f _{Rsi=0,25}	m²K/W	Ridge
1		f _{Rsi=0,25} RORIO Ψ [W//	^{m²K/W} 1 mK]	-0.039
1		f _{Rsi=0,25}	^{m²K/W} 1 mK]	-
vindow sid		f _{RSi=0,25} RORI0 Ψ [W// f _{Rsi=0,25}	m²K/W 1 mK] m²K/W	-0.039 0.93
vindow sid		f _{RSi=0,25} RORI0 Ψ [W// f _{RSi=0,25}	m²K/W 1 mK] m²K/W	-0.039 0.93
vindow sid Top m²K)]		f _{Rsi=0,25} RORI0 Ψ [W// f _{Rsi=0,25} ROJU0 Ψ [W//	m²K/W 1 mK] m²K/W 01 mK]	-0.039 0.93
vindow sid		f _{RSi=0,25} RORI0 Ψ [W// f _{RSi=0,25}	m²K/W 1 mK] m²K/W 01 mK]	-0.039 0.93
vindow sid Top m²K)]		f _{RSi=0,25} RORI0 Ψ [W// f _{Rsi=0,25} ROJUC Ψ [W// f _{Rsi=0,25}	m²K/W 1 mK] m²K/W 01 m²K/W	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{RSi=0,25} RORI0 Ψ [W// f _{RSi=0,25} ROJU0 Ψ [W// f _{RSi=0,25}	1 mK] m²K/W D1 mK] m²K/W D1 Top cei	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{Rsi=0,25} RORI0 Ψ [W// f _{Rsi=0,25} ROJU0 Ψ [W// f _{Rsi=0,25} TCEA0 Ψ [W// f(Rsi=0,25)	1 mK] m²K/W 01 m²K/W 01 Top cei mK]	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{RSi=0,25} RORI0 Ψ [W// f _{RSi=0,25} ROJU0 Ψ [W// f _{RSi=0,25}	1 mK] m²K/W 01 m²K/W 01 Top cei mK]	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{RSi=0,25} RORIO Ψ [W// f _{Rsi=0,25} ROJUC Ψ [W// f _{Rsi=0,25} CEAC Ψ [W// f _{Rsi=0,25}	1 mK] mK/W D1 mK] m ² K/W D1 Top cei mK] m ² K/W	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{RSi=0,25} RORIO Ψ [W// f _{Rsi=0,25} ROJUC Ψ [W// f _{Rsi=0,25} TCEAC Ψ [W// f _{Rsi=0,25}	1 mK] m²K/W 01 mK] m²K/W 01 Top cei mK] m²K/W	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{RSi=0,25} RORI0 Ψ [W// f _{Rsi=0,25} ROJU0 Ψ [W// f _{Rsi=0,25} TCEA0 Ψ [W// f _{Rsi=0,25} EWE0 Ψ [W// f _{Rsi=0,25}	1 m²K/W 1 mK] m²K/W 01 Top cei mK] m²K/W 01 Ext.v mK]	-0.039 0.93 Junctior
vindow sid Top m²K)]		f _{RSi=0,25} RORIO Ψ [W// f _{Rsi=0,25} ROJUC Ψ [W// f _{Rsi=0,25} TCEAC Ψ [W// f _{Rsi=0,25}	1 m²K/W 1 mK] m²K/W 01 Top cei mK] m²K/W 01 Ext.v mK]	-0.039 0.93 Junctior
vindow sid Top m²K)]		$\begin{tabular}{ c c c c c c } \hline f_{Rsi=0,25} & \hline $$ RORIO $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	1 mK] m2K/W 01 m2K/W 01 Top cei m7K/W 01 Ext.v mK] m2K/W	-0.039 0.93 Junctior ling - eaves
vindow sid Top m²K)]		f _{RSi=0,25} RORI0 Ψ [W// f _{Rsi=0,25} ROJU0 Ψ [W// f _{Rsi=0,25} TCEA0 Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25}	1 mK] m²K/W 01 m²K/W 01 Top cei m²K/W 01 Ext.v mK] m²K/W 02 Ext.v	-0.039 0.93 Junctior ling - eaves
vindow sid Top m²K)]		f _{RSi=0,25} RORIO Ψ [W// f _{Rsi=0,25} ROJUC Ψ [W// f _{Rsi=0,25} TCEAC Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25}	1 mK] m²K/W 01 mK] m²K/W 01 Ext.v mK] m²K/W 02 Ext.v mK]	-0.039 0.93 Junctior ling - eaves
vindow sid Top m²K)]		f _{RSi=0,25} RORI0 Ψ [W// f _{Rsi=0,25} ROJU0 Ψ [W// f _{Rsi=0,25} TCEA0 Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25}	1 mK] m²K/W 01 mK] m²K/W 01 Ext.v mK] m²K/W 02 Ext.v mK]	-0.039 0.93 Junctior ling - eaves
vindow sid Top m²K)]		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1 m²K/W 1 mK] m²K/W 01 m²K/W 01 Ext.v m²K/W 02 Ext.v mK] m²K/W	-0.039 0.93 Junction ling - eaves v. overhang
vindow sid Top m²K)]		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1 m²K/W 1 mK] m²K/W 01 m²K/W 01 Ext.v mK] m²K/W 02 Ext.v mK] m²K/W 01 Bas	
vindow sid Top m²K)]		f _{Rsi=0,25} RORIO Ψ [W// f _{Rsi=0,25} ROJUG Ψ [W// f _{Rsi=0,25} TCEAC Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25} EWEO Ψ [W// f _{Rsi=0,25}	1 mK] m²K/W D1 mK] m²K/W 01 Ext.v m²K/W 01 Ext.v mK] m²K/W 02 Ext.v mK] m²K/W 01 Bas mK]	-0.039 0.93 Junction ling - eaves v. overhang
vindow sid Top m²K)]		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1 mK] m²K/W D1 mK] m²K/W 01 Ext.v m²K/W 01 Ext.v mK] m²K/W 02 Ext.v mK] m²K/W 01 Bas mK]	-0.039 0.93 Junction ling - eaves v. overhang
vindow sid		$\begin{tabular}{l}{llllllllllllllllllllllllllllllll$	1 m²K/W 1 mK] m²K/W 01 m²K/W 01 Ext.v m²K/W 02 Ext.v mK] m²K/W 01 Bas mK] m²K/W	-0.039 0.93 Junctior ling - eaves v. overhang v. overhang em.ceEW
vindow sid Top m²K)]		$\begin{tabular}{l}{llllllllllllllllllllllllllllllll$	1 m²K/W 1 mK] m²K/W 01 m²K/W 01 Ext.V m²K/W 02 Ext.V mK] m²K/W 01 Bas mK] m²K/W	-0.039 0.93 Junction ling - eaves v. overhang
vindow sid		$\begin{tabular}{l}{llllllllllllllllllllllllllllllll$	1 m²K/W 1 mK] m²K/W 01 m²K/W 01 Ext.v m²K/W 01 Ext.v m²K/W 01 Ext.v m²K/W 01 Ext.v m²K/W 01 Bas mK] m²K/W	-0.039 0.93 Junctior ling - eaves v. overhang v. overhang em.ceEW

Page 3/4

www.passivehouse.com